我國能源資源稟賦的特點是“富煤、缺油、少氣”,能源結(jié)構(gòu)主要以煤炭為主,原油和天然氣資源的對外依存度較高。2014年6月,習近平總書記就推動能源生產(chǎn)和消費革命提出“四個革命、一個合作”的能源發(fā)展戰(zhàn)略思想,為推進我國能源清潔低碳轉(zhuǎn)型發(fā)展指明了方向?!笆濉睍r期,我國能源消費結(jié)構(gòu)持續(xù)優(yōu)化,非化石能源消費比重從12.1%提高至15.9%,平均每年提高了0.76個百分點。面對全球性的氣候危機,中國在2020年9月向世界鄭重承諾:我國二氧化碳排放力爭于2030年前達到峰值,努力爭取2060年前實現(xiàn)碳中和。2020年我國全社會碳排放約1.06×1010 t,其中電力行業(yè)碳排放約4.6×109 t,占比高達43.4%。在此形勢下,電力行業(yè)肩負著“雙碳”目標實現(xiàn)的重要歷史使命,將承擔著主力軍的關(guān)鍵角色。
2021年中央財經(jīng)委員會第九次會議指出:要構(gòu)建以新能源為主體的新型電力系統(tǒng)。新型電力系統(tǒng)的內(nèi)涵是:以新能源為供給主體、以確保能源電力安全為基本前提、以滿足經(jīng)濟社會發(fā)展電力需求為首要目標,以堅強智能電網(wǎng)為樞紐平臺,以“源網(wǎng)荷儲”互動與多能互補為支撐,具有清潔低碳、安全可控、靈活高效、智能友好、開放互動的基本特征。氫能是一種來源豐富、綠色低碳、應用廣泛的二次能源,將為新型電力系統(tǒng)的安全低碳建設發(fā)揮重要價值。2022年3月,國家發(fā)展和改革委員會發(fā)布《氫能產(chǎn)業(yè)發(fā)展中長期規(guī)劃(2021—2035年)》,氫能的戰(zhàn)略定位被提升到了未來國家能源體系的重要組成部分。
目前,許多國內(nèi)外主流機構(gòu)對氫能在終端能源的消費比重進行了預測。國際氫能委員會(Hydrogen Council)發(fā)布的報告《氫能規(guī)?;蚰茉崔D(zhuǎn)型的可持續(xù)途徑》預計到2050年,在將溫度升幅控制在2 ℃前提下,氫能將承擔全球18%的終端能源消費(約80 EJ),全年的二氧化碳排放量能夠較現(xiàn)在減少約6×109 t。美國燃料電池和氫能協(xié)會(FCHEA)發(fā)布的報告《美國氫能經(jīng)濟路線圖——減排及驅(qū)動氫能在全美實現(xiàn)增長》預計到2050年,氫能將滿足美國終端能源需求的14%。歐盟委員會發(fā)布的兩項戰(zhàn)略計劃《歐盟氫能戰(zhàn)略》和《歐盟能源系統(tǒng)集成戰(zhàn)略》預計到2050年,氫能可以滿足全歐盟24%的終端能源需求。
從中國范圍來看,根據(jù)中國氫能源及燃料電池產(chǎn)業(yè)創(chuàng)新戰(zhàn)略聯(lián)盟(簡稱“中國氫能聯(lián)盟”)預測,到2030年中國氫氣需求量將達到3.5×107 t,在終端能源體系中占比5%,到2050年氫氣需求量接近6×107 t,氫能將在中國終端能源體系中占比至少達到10%,可減排約7×108 t二氧化碳;《中國氫能產(chǎn)業(yè)發(fā)展報告2020》和《2021中國能源化工產(chǎn)業(yè)發(fā)展報告》得出2050年氫能在我國能源體系中占比10%的相同結(jié)論。與上述時點不同,《中國氫能源及燃料電池產(chǎn)業(yè)白皮書2020》預計在2060年氫能在我國終端能源消費中占比將達20%左右。綜合以上數(shù)據(jù),保守估計2050年氫能在我國終端能源體系占比將達10%。氫能將與電能耦合互補,共同成為我國終端能源體系的重要消費主體。
當前關(guān)于氫儲能的綜述性研究較多關(guān)注技術(shù)研發(fā)與應用進展、可再生能源系統(tǒng)集成等方面,而針對氫儲能在新型電力系統(tǒng)中的應用價值分析研究較為匱乏。針對于此,本文從我國新型電力系統(tǒng)“源網(wǎng)荷”各個環(huán)節(jié)對氫儲能的應用價值進行梳理和歸納,力求深入探討氫儲能在新型電力系統(tǒng)中應用存在的挑戰(zhàn)并展望未來發(fā)展。通過本文的研究,可以促進氫儲能產(chǎn)業(yè)與新型電力系統(tǒng)建設的有機融合,驅(qū)動電力、交通、建筑和工業(yè)等部門的碳排放快速達峰。
(一)氫儲能系統(tǒng)
近年來,我國新能源發(fā)展勢頭迅猛。截至2021年年底,我國新能源發(fā)電裝機達到7.26×108 kW,其中風電3.28×108 kW、太陽能發(fā)電3.07×108 kW,分別連續(xù)12年和7年穩(wěn)居全球首位。由于新能源的間歇性特點,加之輸電容量有限,棄風和棄光問題隨著新型電力系統(tǒng)中風電、光伏滲透率的不斷增加將日益突出。此外,在連續(xù)無風、無光等極端天氣下,將造成新型電力系統(tǒng)電力供應可靠性大幅下降甚至出現(xiàn)大面積缺電現(xiàn)象。儲能作為重要的調(diào)節(jié)資源,對于促進新能源高比例消納和保障電力電量實時平衡具有重要作用。2021年7月,國家發(fā)展和改革委員會、國家能源局發(fā)布的《關(guān)于加快推動新型儲能發(fā)展的指導意見》提出,2030年新型儲能裝機規(guī)模達到30 GW以上,首次從政策層面明確和量化了儲能產(chǎn)業(yè)發(fā)展目標。
現(xiàn)有的儲能系統(tǒng)主要分為五類:機械儲能、電化學儲能、電磁儲能、熱儲能和化學儲能。機械儲能主要包括抽水蓄能、壓縮空氣儲能和飛輪儲能等;電化學儲能主要包括鉛酸電池、鋰離子電池、鈉硫電池和液流電池;電磁儲能包括超級電容器儲能和超導儲能;熱儲能是將熱能儲存在隔熱容器的媒介中,適時實現(xiàn)熱能直接利用或者熱發(fā)電;化學儲能是指利用氫等化學物作為能量的載體。儲能即儲存能量,根據(jù)能量形式的不同,儲能又可以分為電儲能、熱儲能和氫儲能三類。機械儲能、電化學儲能和電磁儲能屬于電儲能,目的是儲電,適用于充放電短周期內(nèi)的就地使用。
氫儲能是一種新型儲能,在能量維度、時間維度和空間維度上具有突出優(yōu)勢,可在新型電力系統(tǒng)建設中發(fā)揮重要作用。氫儲能技術(shù)是利用電力和氫能的互變性而發(fā)展起來的。氫儲能既可以儲電,又可以儲氫及其衍生物(如氨、甲醇)。狹義的氫儲能是基于“電 ? 氫 ? 電”(Power-to-Power,P2P)的轉(zhuǎn)換過程,主要包含電解槽、儲氫罐和燃料電池等裝置。利用低谷期富余的新能源電能進行電解水制氫,儲存起來或供下游產(chǎn)業(yè)使用;在用電高峰期時,儲存起來的氫能可利用燃料電池進行發(fā)電并入公共電網(wǎng)。廣義的氫儲能強調(diào)“電 ? 氫”單向轉(zhuǎn)換,以氣態(tài)、液態(tài)或固態(tài)等形式存儲氫氣(Power-to-Gas,P2G),或者轉(zhuǎn)化為甲醇和氨氣等化學衍生物(Power-to-X,P2X)進行更安全地儲存。
氫儲能與其他儲能方式相比,具有以下4個方面的明顯優(yōu)勢:
①在新能源消納方面,氫儲能在放電時間(小時至季度)和容量規(guī)模(百吉瓦級別)上的優(yōu)勢比其他儲能明顯,如圖1所示;
②在規(guī)模儲能經(jīng)濟性方面,隨著儲能時間的增加,儲能系統(tǒng)的邊際價值下降,可負擔的總成本也將下降,規(guī)?;瘍浔葍﹄姷某杀疽鸵粋€數(shù)量級;
③在儲運方式靈活性方面,氫儲能可采用長管拖車、管道輸氫、天然氣摻氫、特高壓輸電 ? 受端制氫和液氨等方式;
④在地理限制與生態(tài)保護上,相較于抽水蓄能和壓縮空氣儲能等大規(guī)模儲能技術(shù),氫儲能不需要特定的地理條件且不會破環(huán)生態(tài)環(huán)境。
圖1 各類儲能在放電時間和容量性能的對比
2020年12月,美國能源部(DOE)發(fā)布了儲能大挑戰(zhàn)路線圖,這是美國發(fā)布的首個關(guān)于儲能的綜合性戰(zhàn)略,氫儲能是其中的主要探討對象。根據(jù)美國國家可再生能源實驗室(NREL)預測,到2050年,持續(xù)放電時間12 h以上的長時儲能的裝機容量將會顯著增長,在未來30年將會部署裝機容量為125 GW到680 GW的長時儲能。根據(jù)Hydrogen Council研究報告,當可再生能源份額達到60%~70%以上時,對氫儲能的需求會呈現(xiàn)出指數(shù)增長勢態(tài)。
截至2021年11月,世界主要發(fā)達國家在運營的氫儲能設施已有9座,均分布在歐盟,如表1所示。
表1 主要發(fā)達國家在運營氫儲能設施
目前,國內(nèi)也有少量氫儲能項目已正式運行或試運行。安徽六安兆瓦級制氫綜合利用示范工程是國內(nèi)首座兆瓦級氫儲能電站,利用1 MW質(zhì)子交換膜電解制氫和余熱利用技術(shù),實現(xiàn)電解制氫、儲氫、售氫、氫能發(fā)電等功能。寧夏寶豐一體化太陽能電解水制氫儲能及綜合應用示范項目為全球單廠規(guī)模最大、單臺產(chǎn)能最大的電解水制氫項目,采用新能源發(fā)電 ? 電解水制綠氫 ? 綠氧直供煤化工的模式,包括2×105 kW光伏發(fā)電裝置和產(chǎn)能為每小時2×104 m3的電解水制氫裝置,項目投產(chǎn)后每年可減少二氧化碳排放約4.45×105 t。大陳島氫能綜合利用示范工程是全國首個海島“綠氫”綜合能源示范項目,通過構(gòu)建基于100%新能源發(fā)電的制氫 ? 儲氫 ? 燃料電池熱電聯(lián)供系統(tǒng),實現(xiàn)清潔能源百分百消納與全過程零碳供能。
(二)氫儲能技術(shù)
與其他燃料相比,氫的質(zhì)量能量密度大,但體積能量密度低(汽油的1/3000),因此構(gòu)建氫儲能系統(tǒng)的重要前提條件之一是在較高體積能量密度下儲存氫氣。目前,主要儲氫方式可以分為物理儲氫和化學儲氫。物理儲氫包括高壓氣態(tài)儲存技術(shù)、低溫液態(tài)儲存技術(shù)和地質(zhì)儲氫技術(shù);化學儲氫包括固態(tài)儲存技術(shù)、有機液態(tài)儲氫技術(shù)和液氨儲氫技術(shù)。不同儲氫技術(shù)的密度如表2所示。
表2 不同儲氫技術(shù)的密度
1. 物理儲氫技術(shù)
(1)高壓氣態(tài)儲存技術(shù)。高壓氣態(tài)儲氫是指在高壓下,將氫氣壓縮,以高密度氣態(tài)形式儲存于特定容器中,是目前應用最廣泛的儲氫方式。相對其他儲氫技術(shù),其具有成本較低、能耗低、易脫氫、工作條件較寬松等特點,是目前最常用并且發(fā)展最成熟的儲氫技術(shù),其難點主要集中在儲氫容器的研制上。目前,儲氫容器通常為耐高壓的鋼制氣瓶,主要包括金屬儲罐、金屬內(nèi)襯纖維纏繞儲罐和全復合輕質(zhì)纖維纏繞儲罐。
(2)低溫液態(tài)儲存技術(shù)。低溫液態(tài)儲氫將氫氣冷卻至-253 ℃,液化儲存于低溫絕熱液氫罐中,儲氫密度可達約71 kg/m3,體積密度為氣態(tài)時的845倍,實現(xiàn)高效儲氫,其輸送效率高于氣態(tài)氫。但液氫裝置一次性投資較大,液化過程中能耗較高,儲存過程中有一定的蒸發(fā)損失,其蒸發(fā)率與儲氫罐容積有關(guān),大儲罐的蒸發(fā)率遠低于小儲罐。國內(nèi)液態(tài)儲氫應用成本較高,目前主要用于航天航空領(lǐng)域及軍事領(lǐng)域。北京航天試驗技術(shù)研究所(101所)以及北京中科富海低溫科技有限公司等正在突破相關(guān)核心裝備。
(3)地質(zhì)儲氫技術(shù)。氫氣地質(zhì)儲存是氫能大規(guī)模和長期儲存的最佳選擇。國際上,根據(jù)現(xiàn)有的地理條件,選擇鹽穴、廢棄礦井、油氣井和含水層大規(guī)模長期儲存壓縮氫氣的方式。這種儲氫成本低,約0.6美元/kg,效率約為98%。從具體國家來看,美國具有最大的可儲存氫的鹽穴(1×104~2×104 t),英國有3個鹽穴可以儲存1000 t氫氣,德國計劃于2023年建設1個氫氣的鹽穴儲存示范項目(3500 t)。
2. 化學儲氫技術(shù)
與物理儲氫不同,化學儲氫方案一般通過利用儲存介質(zhì)與氫氣結(jié)合為穩(wěn)定化合物的方式實現(xiàn)氫儲存。用氫時,通過加熱或其他方式使化合物分解放氫,同時回收儲存介質(zhì)。根據(jù)儲存介質(zhì)種類不同,化學儲氫技術(shù)主要包括金屬氫化物儲氫、液態(tài)有機氫載體儲氫、無機物儲氫、液氨儲氫等。與高壓氣態(tài)儲氫和低溫液態(tài)儲氫相比,化學儲氫技術(shù)成熟度相對較低,目前多在實驗室、示范項目環(huán)節(jié)。
(1)固態(tài)儲存技術(shù)。固態(tài)儲氫是利用氫氣和儲氫材料之間發(fā)生物理或化學反應從而轉(zhuǎn)化為固溶體或者氫化物的形式進行氫氣儲存。固態(tài)儲氫材料主要可分為物理吸附儲氫和化學氫化物儲氫。相較于高壓氣態(tài)和低溫液態(tài)儲氫,其儲氫體積密度較大、儲氫壓力小、運輸方便、安全性高、可重復利用等優(yōu)點,適用于對體積要求較嚴格的應用場景,是最具發(fā)展?jié)摿Φ囊环N儲氫方式。但其對儲氫材料要求較高,目前,各種材料多數(shù)處于研究階段。
(2)有機液態(tài)儲氫。有機液態(tài)儲氫是通過不飽和液體有機物的可逆加氫和脫氫反應來實現(xiàn)氫能儲存的方法。該技術(shù)先將液體有機氫能載體催化加氫儲能,再將加氫后的液體輸送至各站點分發(fā),最后輸入脫氫反應裝置中發(fā)生催化脫氫反應,釋放氫能。有機液態(tài)儲氫具有較高儲氫密度,在環(huán)境條件下即可儲氫,安全方便,可實現(xiàn)跨季節(jié)、跨地區(qū)的長期儲存,便于長距離運輸,但也存在費用高,氫氣純度不夠等缺點。
(3)液氨儲氫技術(shù)。氫與氮氣在催化劑作用下合成液氨,以液氨形式儲運。液氨在常壓、約400 ℃下分解放氫。相比于低溫液態(tài)儲氫技術(shù)要求的極低氫液化溫度(-253 ℃),氨在一個大氣壓下的液化溫度要高得多(-33 ℃),“氫 ? 氨 ? 氫”方式的耗能、實現(xiàn)難度及運輸難度相對更低。同時,液氨儲氫中體積儲氫密度比液氫高1.7倍,更遠高于長管拖車式氣態(tài)儲氫技術(shù)。該技術(shù)在長距離氫能儲運中有一定優(yōu)勢。
三、氫儲能在新型電力系統(tǒng)中的應用價值及規(guī)模分析
相比于傳統(tǒng)電力系統(tǒng),新型電力系統(tǒng)有以下幾點重要變化,如圖2所示:
①從發(fā)電側(cè)形態(tài)上看,將從以火電為主轉(zhuǎn)向以風、光等新能源發(fā)電為主。特征變化方面,從高碳電力系統(tǒng)變?yōu)榈吞茧娏ο到y(tǒng)、從連續(xù)可控電源變?yōu)殡S機波動電源。
②從電網(wǎng)側(cè)形態(tài)上看,將從單一大電網(wǎng)演變?yōu)榇箅娋W(wǎng)與微電網(wǎng)互補并存。特征變化方面,從剛性電網(wǎng)變?yōu)殪`活韌性電網(wǎng)、電網(wǎng)數(shù)字化水平從低到高。
③從用戶側(cè)形態(tài)來看,將從電力消費者轉(zhuǎn)變?yōu)殡娏Α爱a(chǎn)消者”。特征變化方面,從靜態(tài)負荷資源轉(zhuǎn)變?yōu)閯討B(tài)可調(diào)負荷資源、從單向電能供給變?yōu)殡p向電能互濟、終端電能替代比例從低到高。
④從電能平衡方式上看,將由“源隨荷動”轉(zhuǎn)變?yōu)椤霸淳W(wǎng)荷儲”互動。特征變化方面,從自上而下調(diào)度模式變?yōu)槿W(wǎng)協(xié)同的調(diào)度模式、從實時平衡模式變?yōu)榉峭耆珜崟r平衡模式。
⑤從技術(shù)基礎(chǔ)形態(tài)上看,將從以同步機為主的機械電磁系統(tǒng)變?yōu)橐酝綑C和電力電子設備共同主導的混合系統(tǒng)。特征變化方面,從高轉(zhuǎn)動慣量系統(tǒng)變?yōu)槿蹀D(zhuǎn)動慣量系統(tǒng)。
圖2 新型電力系統(tǒng)與傳統(tǒng)電力系統(tǒng)的對比
針對上述變化,新型電力系統(tǒng)面臨著諸多新訴求:
①構(gòu)建新型電力系統(tǒng)的核心是新能源成為主體電源后如何實現(xiàn)不同時間尺度上的功率與能量平衡,其關(guān)鍵在于統(tǒng)籌發(fā)展不同功能定位的儲能。電化學儲能主要解決系統(tǒng)短期尺度的功率平衡,難以應對周、月、季等長期尺度下的能量不平衡問題,亟需引入先進的長時儲能技術(shù)。
②隨著新能源逐步取代化石能源裝機,能量在空間上的不平衡性愈發(fā)凸顯?,F(xiàn)階段調(diào)峰資源以火電機組、抽水蓄能電站為主,跨區(qū)域調(diào)峰能力受輸配電網(wǎng)絡布局和容量的限制,且隨著煤電機組的提前退役和抽水蓄能電站開發(fā)殆盡,未來調(diào)節(jié)能力有限,亟需引入大規(guī)模、跨區(qū)域的新興調(diào)峰手段。
③電能替代是實現(xiàn)碳中和目標的重要手段。然而,單純依靠電氣化難以實現(xiàn)重卡運輸、鐵路貨運、航空航天等交通領(lǐng)域和冶金、水泥、化工等工業(yè)領(lǐng)域的深度脫碳,新型電力系統(tǒng)亟需與其他深度脫碳的能源品種進行有機融合。
面對以上新型電力系統(tǒng)的訴求,氫能可發(fā)揮如下的關(guān)鍵作用:
①氫可以多種方式進行儲存,如高壓壓縮、低溫液化、固體儲氫、轉(zhuǎn)化為液體燃料或與天然氣混合儲存在天然氣基礎(chǔ)設施中,從而實現(xiàn)小時至季節(jié)的長時間、跨季節(jié)儲存;
②液態(tài)氫能量密度大(143 MJ/kg,可折算為40 kWh·kg),約為汽油、柴油、天然氣的2.7倍、電化學儲能(根據(jù)種類不同,在100~240 Wh/kg)的百倍,氫儲能是少有的能夠儲存百吉瓦時以上的方式,且氫氣的運輸方式多元,不受輸配電網(wǎng)絡的限制,從而實現(xiàn)大規(guī)模、跨區(qū)域調(diào)峰。
③氫能作為高能量密度、高燃燒熱值的燃料,可在重卡運輸、鐵路貨運、航運和航天等交通應用場景發(fā)揮重要作用;與此同時,氫能還是一種重要的工業(yè)原料,綠色氫能可用于替代化石燃料作為冶金、水泥和化工等工業(yè)領(lǐng)域的還原劑。
氫儲能在新型電力系統(tǒng)中的定位有別于電化學儲能,主要是長周期、跨季節(jié)、大規(guī)模和跨空間儲存的作用,在新型電力系統(tǒng)“源網(wǎng)荷”中具有豐富的應用場景,如圖3所示。
圖3 氫儲能在新型電力系統(tǒng)“源網(wǎng)荷”的應用場景
(一)氫儲能在電源側(cè)的應用價值
氫儲能在電源側(cè)的應用價值主要體現(xiàn)在減少棄電、平抑波動和跟蹤出力等方面。
1. 利用風光棄電制氫
由于光伏、風力等新能源出力具有天然的波動性,棄光、棄風問題一直存在于電力系統(tǒng)中。隨著我國“雙碳”目標下新能源裝機和發(fā)電量的快速增長,未來新能源消納仍有較大隱憂。因此,利用廣義氫儲能將無法并網(wǎng)的電能就地轉(zhuǎn)化為綠氫,不僅可以解決新能源消納問題,并可為當?shù)毓I(yè)、交通和建筑等領(lǐng)域提供清潔廉價的氫能,延長綠色產(chǎn)業(yè)鏈條。國家能源局統(tǒng)計數(shù)據(jù)顯示,2020年我國棄水、棄風和棄光電量為3.01×1010 kW·h、1.66×1010 kW·h和5.26×109 kW·h。制氫電耗按照5 kW·h/Nm3計算,理論上總棄電量可制取綠氫9.28×105 t。
2. 平抑風光出力波動
質(zhì)子交換膜(PEM)電解技術(shù)可實現(xiàn)輸入功率秒級、毫秒級響應,可適應0~160%的寬功率輸入,冷啟動時間小于5 min,爬坡速率為每秒100%,使得氫儲能系統(tǒng)可以通過實時地調(diào)整跟蹤風電場、光伏電站的出力。氫儲能系統(tǒng)在風電場、光伏電站出力尖峰時吸收功率,在其出力低谷時輸出功率。風光總功率加上儲氫能的功率后的聯(lián)合功率曲線變得平滑,從而提升新能源并網(wǎng)友好性,支撐大規(guī)模新能源電力外送。
3. 跟蹤計劃出力曲線
通過對風電場、光伏電站的出力預測,有助于電力系統(tǒng)調(diào)度部門統(tǒng)籌安排各類電源的協(xié)調(diào)配合,及時調(diào)整調(diào)度計劃,從而降低風光等隨機電源接入對電力系統(tǒng)的影響。另一方面,隨著新能源逐步深入?yún)⑴c我國電力市場,功率預測也是報量、報價的重要基礎(chǔ)。然而,由于預測技術(shù)的限制,風光功率預測仍存在較大誤差。利用氫儲能系統(tǒng)的大容量和相對快速響應的特點,對風光實際功率與計劃出力間的差額進行補償跟蹤,可大幅度地縮小與計劃出力曲線的偏差。
(二)氫儲能在電網(wǎng)側(cè)的應用價值
氫儲能在電網(wǎng)側(cè)的應用價值主要體現(xiàn)在為電網(wǎng)運行提供調(diào)峰容量和緩解輸變線路阻塞等方面。
1. 提供調(diào)峰輔助容量
電網(wǎng)接收消納新能源的能力很大程度上取決于其調(diào)峰能力。隨著大規(guī)模新能源的滲透及產(chǎn)業(yè)用電結(jié)構(gòu)的變化,電網(wǎng)峰谷差將不斷擴大。我國電力調(diào)峰輔助服務面臨著較大的容量缺口(見圖4),到2030年容量調(diào)節(jié)缺口將達到1200 GW,到2050年缺口將擴大至約2600 GW。氫儲能具有高密度、大容量和長周期儲存的特點,可以提供非常可觀的調(diào)峰輔助容量。
圖4 我國2020—2050年調(diào)峰容量缺口
2. 緩解輸配線路阻塞
在我國部分地區(qū),電力輸送能力的增長跟不上電力需求增長的步伐,在高峰電力需求時輸配電系統(tǒng)會發(fā)生擁擠阻塞,影響電力系統(tǒng)正常運行。因此,大容量的氫儲能可充當“虛擬輸電線路”,安裝在輸配電系統(tǒng)阻塞段的潮流下游,電能被存儲在沒有輸配電阻塞的區(qū)段,在電力需求高峰時氫儲能系統(tǒng)釋放電能,從而減少輸配電系統(tǒng)容量的要求,緩解輸配電系統(tǒng)阻塞的情況。
(三)氫儲能在負荷側(cè)的應用價值
氫儲能在電網(wǎng)側(cè)的應用價值主要體現(xiàn)在參與電力需求響應、實現(xiàn)電價差額套利以及作為應急備用電源等方面。
1. 參與電力需求響應
新型電力系統(tǒng)構(gòu)建理念將由傳統(tǒng)的“源隨荷動”演進為“荷隨源動”甚至“源荷互動”。在此背景下,負荷側(cè)的靈活性資源挖掘十分重要。分布式氫燃料電池電站和分布式制氫加氫一體站可作為高彈性可調(diào)節(jié)負荷,可以快速響應不匹配電量。前者直接將氫能的化學能轉(zhuǎn)化為電能,用于“填谷”。后者通過調(diào)節(jié)站內(nèi)電制氫功率進行負荷側(cè)電力需求響應,用于“削峰”。
2. 實現(xiàn)電價差額套利
電力用戶將由單一的消費者轉(zhuǎn)變?yōu)榛旌闲偷摹爱a(chǎn)消者”。我國目前絕大部分省市工業(yè)用戶均已實施峰谷電價制來鼓勵用戶分時計劃用電。氫儲能用于峰谷電價套利,用戶可以在電價較低的谷期利用氫儲能裝置存儲電能,在高峰時期使用燃料電池釋放電能,從而實現(xiàn)峰谷電價套利。目前,從2021年國內(nèi)工商業(yè)電價來看,我國一半以上地區(qū)可以達到3∶1峰谷價差要求,價差值在0.5~0.7元/kW·h。此外,我國一些省份已開始實施季節(jié)價差(如浙江?。岣吡讼募竞投镜碾妰r。隨著我國峰谷電價的不斷拉大和季節(jié)電價的執(zhí)行,氫儲能存在著一定的套利空間。
3. 作為應急備用電源
柴油發(fā)電機、鉛酸蓄電池或鋰電池是目前應急備用電源系統(tǒng)的主流。使用柴油發(fā)電機的短板在于噪音大、高污染排放。鉛酸蓄電池或鋰電池則面臨使用壽命較短、能量密度低、續(xù)航能力差等缺陷。在此情況下,環(huán)保、靜音、長續(xù)航的移動式氫燃料電池是最理想的替代方案之一。例如,國內(nèi)首臺單電堆功率超過120 kW氫燃料電池移動應急電源參與抗擊廣東省的“山竹”臺風。
(四)氫儲能的未來規(guī)模分析
“源網(wǎng)荷”各側(cè)的氫儲能未來發(fā)展規(guī)模主要受政策驅(qū)動,基于目前的政策情景,短期內(nèi)氫儲能增長點主要在電源側(cè),而電網(wǎng)側(cè)和用戶側(cè)很難形成規(guī)?;?。
①電源側(cè)儲能政策方面:我國已有超過20個省份發(fā)布新能源強制配置儲能的相關(guān)政策,所提出的儲能配置比例基本在5%~20%、時間在1~4 h。此外,山東省下發(fā)的《關(guān)于開展儲能示范應用的實施意見》鼓勵風電、光伏發(fā)電制氫,制氫裝機運行容量視同配建儲能容量。
②電網(wǎng)側(cè)儲能政策方面:2019年5月,國家發(fā)展和改革委員會印發(fā)的《輸配電定價成本監(jiān)審辦法》第十條中明確規(guī)定了電網(wǎng)投資的電儲能資產(chǎn)不計入輸配電價成本。目前,電網(wǎng)側(cè)儲能成本的疏導機制尚不完善,電網(wǎng)企業(yè)投資儲能的積極性不高,短期內(nèi)電網(wǎng)側(cè)大規(guī)模儲能建設增長幅度有限。
③用戶側(cè)儲能政策方面:2021年7月,國家發(fā)展和改革委員會發(fā)布《關(guān)于進一步完善分時電價機制的通知》,要求系統(tǒng)峰谷差率超過40%的地方,峰谷電價價差原則上不低于4∶1,其他地方原則上不低于3∶1。此外,我國部分省份也開始實行季節(jié)價差。然而,由于氫儲能系統(tǒng)成本過高與效率偏低,目前峰谷價差和季節(jié)價差難以刺激用戶側(cè)氫儲能投資建設。
四、 氫儲能在新型電力系統(tǒng)應用的挑戰(zhàn)及展望
氫儲能可有效補充電化學儲能的不足,助力新型電力系統(tǒng)的發(fā)展,成為未來實現(xiàn)能源結(jié)構(gòu)轉(zhuǎn)型的重要技術(shù)方向?,F(xiàn)階段,我國氫儲能在新型電力系統(tǒng)中應用的機遇與挑戰(zhàn)并存。圖5展示了氫儲能、電化學儲能、抽水蓄能和壓縮空氣儲能在各類性能指標上的對比。可以看出,在儲存容量、放電時長等性能指標上,氫儲能高于其他儲能,且可完全滿足新型電力系統(tǒng)的要求,而在投資成本和轉(zhuǎn)化效率方面,與要求仍有一定差距。
圖5 氫儲能性能與新型電力系統(tǒng)要求對比
(一)氫儲能在新型電力系統(tǒng)應用挑戰(zhàn)
現(xiàn)階段,受技術(shù)、經(jīng)濟、政策和標準等因素的制約,氫能在新型電力系統(tǒng)中的應用仍面臨諸多挑戰(zhàn)。
1. 氫儲能系統(tǒng)效率相對較低
現(xiàn)階段,抽水蓄能、飛輪儲能、鋰電池、鈉硫電池以及各種電磁儲能的能量轉(zhuǎn)化效率均在70%以上。相對而言,氫儲能系統(tǒng)效率較低。其中,國內(nèi)“電 ? 氫”轉(zhuǎn)化過程的堿性電解水、PEM電解水和固體氧化物(SO)電解水制氫效率分別為63%~70%、56%~60%和74%~81%。廣義氫儲能僅考慮“電 ? 氫”轉(zhuǎn)化過程,SO電解效率與其他儲能具有可比性,而堿性和PEM相對較低。另一方面,“氫 ? 電”轉(zhuǎn)化過程的燃料電池發(fā)電效率為50%~60%,其中有大部分能量轉(zhuǎn)化為熱能。狹義氫儲能的“電 ? 氫 ? 電”過程存在兩次能量轉(zhuǎn)換,整體效率僅有40%左右,與其他儲能的效率差距明顯。
2. 氫儲能系統(tǒng)成本相對較高
當前抽水蓄能和壓縮空氣儲能投資功率成本約為7000元/kW,電化學儲能成本約為2000元/kW,而氫儲能系統(tǒng)成本約為13 000元/kW,遠高于其他儲能方式。其中,燃料電池發(fā)電系統(tǒng)造價約9000元/kW,占到總投資的近70%。基于PEM和SO技術(shù)的可逆式燃料電池(RFC)可以將燃料電池和電解池集成于一體,從而降低投資成本。然而,國內(nèi)RFC技術(shù)與國際先進水平有一定差距,主要體現(xiàn)在技術(shù)成熟度、示范規(guī)模、使用壽命和經(jīng)濟性方面,關(guān)鍵核心材料也主要依賴進口。
3. 電氫耦合政策體系仍不完善
針對電氫耦合的頂層規(guī)劃和激勵機制尚不完善。氫能已被國家作為中長期科學和技術(shù)發(fā)展的重點研究方向,氫儲能也被明確納入“新型儲能”,但關(guān)于電氫耦合的頂層規(guī)劃有待完善。在頂層的補貼與獎勵方面,2020年國家層面已發(fā)布《關(guān)于開展燃料電池汽車示范應用的通知》,采取“以獎代補”方式,對符合條件的城市群開展燃料電池汽車技術(shù)研發(fā)和示范應用給予獎勵。該政策間接性地推動了氫儲能系統(tǒng)的示范和規(guī)?;5谏嫌蔚碾娊馑迫【G氫環(huán)節(jié),僅有部分省份出臺了政策性的電價優(yōu)惠,相應的頂層激勵機制仍然缺失。
4. 電氫耦合標準體系仍不健全
隨著氫能產(chǎn)業(yè)的快速發(fā)展,標準對氫能產(chǎn)業(yè)發(fā)展的規(guī)范和支撐作用也日趨明顯。我國于2008年批準成立了全國氫能標準化技術(shù)委員會(SAC/TC309)和全國燃料電池及液流電池標準化技術(shù)委員會(SAC/TC342),分別構(gòu)建了我國的氫能技術(shù)標準體系和燃料電池標準體系。截至2021年4月,現(xiàn)行氫能相關(guān)國家標準共計95項,涉及氫安全、臨氫材料、氫品質(zhì)、制氫、氫儲運、加氫站、燃料電池和氫能應用等方面。但國家標準層面主要集中在氫能應用燃料電池技術(shù)方面,其他領(lǐng)域氫能技術(shù)標準相對薄弱,且有相當部分標準的制定年限較為久遠,現(xiàn)階段適用性不強。因此,在電氫耦合方面,仍需進一步加快制定 / 修訂新能源制氫、電制氫加氫一體化、可逆式燃料電池、電氫耦合系統(tǒng)運行等標準。技術(shù)標準是個復雜系統(tǒng)工程,需要再進一步提升政、產(chǎn)、學、研各方的協(xié)同水平。
(二)氫儲能在新型電力系統(tǒng)應用展望
氫儲能將應用于新型電力系統(tǒng)“源網(wǎng)荷”的各個環(huán)節(jié),呈現(xiàn)電氫耦合發(fā)展態(tài)勢。針對氫儲能在新型電力系統(tǒng)應用面臨的挑戰(zhàn),本文從以下幾個方面對氫儲能在新型電力系統(tǒng)的未來發(fā)展進行展望。
1. 廣義氫儲能為主、狹義氫儲能為輔
現(xiàn)階段應以推廣效率高、成本低的“電 ? 氫”廣義氫儲能方式為主,直接為我國的交通、建筑和工業(yè)等終端部門提供高純度氫氣。在狹義氫儲能的“氫 ? 電”轉(zhuǎn)化環(huán)節(jié),充分利用氫燃料電池的熱電聯(lián)產(chǎn)特性,實現(xiàn)不同品位能量的梯級利用,提高能量的轉(zhuǎn)化效率。針對氫儲能成本過高的問題,積極探索共享儲能、融資租賃、跨季節(jié)價差套利等多元化商業(yè)模式來降低成本。與此同時,通過設立氫儲能產(chǎn)業(yè)發(fā)展基金、借助資本市場拓展氫儲能融資渠道、加強綠色信貸支持氫儲能基礎(chǔ)設施建設等方式,構(gòu)建氫儲能金融政策體系。未來,隨著新能源電力價格以及電解資本支出的下降,氫儲能中的電解系統(tǒng)成本將大幅下降。當電價為0.5元/kW·h時,堿性電解和PEM電解的單位制氫成本分別為33.9元/kg和42.9元/kg,而當電價下降為0.1元/kW·h時,上述數(shù)值分別僅為9.2元/kg和20.5元/kg。與此同時,隨著規(guī)模效應和技術(shù)成熟,堿性和PEM電解槽投資成本將以每年9%和13%的學習率下降,氫燃料電池和儲氫罐成本也分別以11%~17%、10%~13%的速率下降。
2. 充分發(fā)揮市場力量促進氫儲能發(fā)展
借助“加快建設全國統(tǒng)一大市場”的契機,構(gòu)建氫能市場、電力市場和碳市場的多層次協(xié)同市場,促進氫儲能發(fā)展。在氫能市場方面,積極探索我國氫能市場交易中心、結(jié)算中心建設,并關(guān)注氫能進出口國際貿(mào)易,可從擁有豐富可再生能源資源的沙特阿拉伯、智利等國家進口低成本綠氫,并利用我國海上風電制氫優(yōu)勢向日本、韓國等高氫氨需求國家出口氫氨能源;在電力市場方面,我國電力輔助服務市場建設尚處于初級階段,需要健全覆蓋氫儲能的價格機制,探索氫儲能參與電力市場的交易規(guī)則;在碳市場方面,未來將被納入碳交易體系的八大行業(yè)中,既有直接生產(chǎn)氫氣的化工行業(yè),也有鋼鐵、建材等氫氣需求行業(yè),需要積極探索氫能行業(yè)合理的碳價信號,引導高碳制氫工藝向低碳制氫工藝轉(zhuǎn)變、高碳用氫環(huán)節(jié)向低碳用氫環(huán)節(jié)轉(zhuǎn)變,并推動綠氫的碳減排量納入核證自愿減排量(CCER)市場交易。最后,加強氫能市場、電力市場、碳市場的頂層設計和規(guī)劃,做好政策協(xié)調(diào)和機制協(xié)同。
3. 積極探索氫能運輸方式的最優(yōu)組合
我國風光資源集中在“三北”地區(qū)、水資源集中在西南地區(qū),而氫能主要需求在東南沿海地區(qū),呈逆向分布。在氫能短距離運輸方面,高壓氣態(tài)拖車運氫具有明顯成本優(yōu)勢。以20 MPa壓力為例,當運輸距離為200 km以下時,氫氣的運輸成本僅為9.57元/kg;而距離增加至500 km時,運輸成本將近22.3元/kg。此外,該方式人工費占比較高,下降空間有限。
因此,在氫能長距離運輸方面,需要積極探索以下多種新興方式:
①利用現(xiàn)有西氣東輸、川氣東輸?shù)扔?0 000 km天然氣主干管網(wǎng)和龐大的支線管網(wǎng),摻入一定安全比例(5%~20%)氫氣進行輸送;
②利用我國世界領(lǐng)先的“十四交十二直”26項特高壓工程輸電線路,采用“特高壓輸電+受側(cè)制氫”模式進行氫氣虛擬運輸;
③利用液氨儲運的成本和安全優(yōu)勢,將液氨作為氫氣儲運介質(zhì),采用“氫 ? 氨 ? 氫”模式進行氫氣運輸。據(jù)預測,當運輸距離為10 000 km時,2030年液氨運輸成本大概在16.7元/kg,2050年下降至4.7元/kg。未來需要進一步對比多種新興路線的技術(shù)經(jīng)濟性,尋求氫能運輸方式的最優(yōu)組合。
4. 氫儲能發(fā)展加速電力系統(tǒng)形態(tài)演進
氫儲能的大規(guī)模發(fā)展將加速電力系統(tǒng)形態(tài)演進,促進新型電力系統(tǒng)建成:
①氫儲能可以突破新能源電力占比的限制,促進更高比例的新能源發(fā)展,快速支撐新型電力系統(tǒng)內(nèi)新能源裝機占比和發(fā)電占比超過50%;
②電解制氫、儲氫和氫燃料電池發(fā)電可構(gòu)建微電網(wǎng)系統(tǒng),進行熱、電、氫多元能源聯(lián)供,有效解決偏遠地區(qū)清潔用能的問題,并提高微電網(wǎng)在電力系統(tǒng)中的滲透率,增強新型電力系統(tǒng)的抗風險能力;
③氫儲能作為電力系統(tǒng)“源網(wǎng)荷”多側(cè)的關(guān)鍵靈活性資源,可促進“源網(wǎng)荷儲”各環(huán)節(jié)協(xié)調(diào)互動,實現(xiàn)新型電力系統(tǒng)在不同時間尺度上的電力電量平衡;
④氫儲能系統(tǒng)可以作為能源樞紐之一,可在源側(cè)、荷側(cè)實現(xiàn)多能源互補。在電源側(cè),氫儲能可以促進“風光氫儲一體化”“風光水火儲氫一體化”等多能互補綜合能源基地建設,在用戶側(cè),制氫加氫一體站可以與加油站、加氣站和充電站進行合建,形成綜合能源服務站。
文章轉(zhuǎn)載自微信公眾號:DT 新材料